Peer Review

2025

107.

Hydroxylation of an ultrathin Co3O4(111) film on Ir(100) studied by in situ ambient pressure XPS and DFT

T. Haunold, K. Anić, A. Genest, C. Rameshan, M. Roiaz, H. Li, T. Wicht, J. Knudsen, G. Rupprechter
Surface Science, 751, 122618.
https://doi.org/10.1016/j.susc.2024.122618

2024

106.

How reduction temperature influences the structure of perovskite-oxide catalysts during the dry reforming of methane

F. Schrenk, L. Lindenthal, H. Drexler, T. Berger, R. Rameshan, T. Ruh, K. Föttinger, C. Rameshan
RSC Sustainability, 2, 3334–3344
https://doi.org/10.1039/D4SU00483C

105.

Cu-doped perovskite-type oxides: A structural deep dive and examination of their exsolution behaviour influenced by B-site doping

T. Berger, H. Drexler, T. Ruh, L. Lindenthal, F. Schrenk, J. Bock, R. Rameshan, K. Föttinger, J. Irrgeher, C. Rameshan
Catalysis Today, 437, 114787.
https://doi.org/10.1016/j.cattod.2024.114787

104.

Engineering surface dipoles on mixed conducting oxides with ultra-thin oxide decoration layers

M. Siebenhöfer, A. Nenning, C. Rameshan, P. Blaha, J. Fleig, M. Kubicek
Nature Communications, 15, 1730.
https://doi.org/10.1038/s41467-024-45824-9

103.

Mn-promoted MoS2 catalysts for CO2 hydrogenation: enhanced methanol selectivity due to MoS2/MnOx interfaces

G. A. S. Alves, G. Pacholik, S. Pollitt, T. Wagner, R. Rameshan, C. Rameshan, K. Föttinger
Catalysis Science & Technology, 14, 1138–1147.
https://doi.org/10.1039/D3CY01711G

102.

Operando probing of the surface chemistry during the Haber–Bosch process

C. M. Goodwin, P. Lömker, D. Degermann, B. Davies, M. Shipilin, F. Garcia-Martinez, S. Koroidov, J. K. Mathiesen, R. Rameshan, G. L. S. Rodrigues, C. Schlueter, P. Amman, A. Nilsson
Nature, 625, 282–286.
https://doi.org/10.1038/s41586-023-06844-5

2023

101.

Dynamic behaviour of platinum and copper dopants in gold nanoclusters supported on ceria catalysts

N. Müller, R. Banu, A. Loxha, F. Schrenk, L. Lindenthal, C. Rameshan, E. Pittenauer, J. Llorca, J. Timoshenko, C. Marini, N. Barrabés
communications chemistry, 6, 277 (10pp).
https://doi.org/10.1038/s42004-023-01068-0

100.

Perovskite-Type Oxides as Exsolution Catalysts in CO2 Utilization

T. Ruh, F. Schrenk, T. Berger, C. Rameshan
Encyclopedia, 3, 1461–1473.
https://doi.org/10.3390/encyclopedia3040104

99.

How to verify the precision of density-functional-theory implementations via reproducible and universal workflows

E. Bosoni, L. Beal, M. Bercx, P. Blaha, S. Blügel, J. Bröder, M. Callsen, S. Cottenier, A. Degomme, V. Dikan, K. Eimre, E. Flage-Larsen, M. Fornari, A. Garcia, L. Genovese, M. Giantomassi, S. P. Huber, H. Janssen, G. Kastlunger, M. Krack, G. Kresse, T. D. Kühne, K. Lejaeghere, G. K. H. Madsen, M. Marsman, N. Marzari, G. Michalicek, H. Mirhosseini, T. M. A. Müller, G. Petretto, C. J. Pickard, S. Poncé, G.-M. Rignanese, O. Rubel, T. Ruh, M. Sluydts, D. E. P. Vanpoucke, S. Vijay, M. Wolloch, D. Wortmann, A. V. Yakutovich, J. Yu, A. Zadoks, B. Zhu, G. Pizzi
Nature Review Physics, 6, 45–68.
https://doi.org/10.1038/s42254-023-00655-3

98.

The Influence of Isolation on Learning in an Immersive Laboratory Environment

M. Holly, S. Sommer, T. Ruh, D. Stadlbauer, C. Rameshan, J. Pirker
International Conference on Advanced Learning Technologies (ICALT), 2023, 285–289.
https://doi.org/10.1109/ICALT58122.2023.00090

97.

Roadmap on exsolution for energy applications

D. Neagu, J. T. S. Irvine, J. Wang, B. Yildiz, A. K. Opitz, J. Fleig, Y. Wang, J. Liu, L. Shen, F. Ciucci, B. A. Rosen, Y. Xiao, K. Xie, G. Yang, Z. Shao, Y. Zhang, J. M. Reinke, T. A. Schmauss, S. Barnett, R. Maring, V. Kyriakou, U. Mushtag, M. N. Tsampas, Y. Kim, R. O’Hayre, A. J. Carrillo, T. Ruh, L. Lindenthal, F. Schrenk, C. Rameshan, E. I. Papaioannou, K. Kousi, I. Metcalfe, X. Xu, G. Liu
Journal of Physics: Energy, 5, 031501.
https://doi.org/10.1088/2515-7655/acd146

96.

Crystal-Orientation-Dependent Oxygen Exchange Kinetics on Mixed Conducting Thin-Film Surfaces Investigated by In Situ Studies

M. Siebenhöfer, C. Riedl, A. Nenning, S. Raznjevic, F. Weller, W. Artner, Z. Zhang, C. Rameshan, J. Fleig, M. Kubicek
ACS Applied Energy Materials, 6, 6712–6720.
https://doi.org/10.1021/acsaem.3c00870

95.

Surface Decorations on Mixed Ionic and Electronic Conductors: Effects on Surface Potential, Defects, and the Oxygen Exchange Kinetics

C. Riedl, M. Siebenhöfer, A. Nenning, G. E. Wilson, J. Kilner, C. Rameshan, A. Limbeck, A. K. Opitz, M. Kubicek, J. Fleig
ACS Applied Materials & Interfaces, 15, 26787–26798.
https://doi.org/10.1021/acsami.3c03952

94.

Influence of hot liquid flowing water on Zeolite Y stability

M. Latschka, B. Wellscheid, R. Rameshan, T. Schöberl, J. Essmeister, G. Pacholik, F. Valentini, L. Balta, A. Limbeck, C. Rameshan, H. Kählig, K. Föttinger
Microporous and Mesoporous Materials, 354, 112557.
https://doi.org/10.1016/j.micromeso.2023.112557

93.

Exsolved catalyst particles as a plaything of atmosphere and electrochemistry

H. Summerer, A. Nenning, C. Rameshan, A. K. Opitz
EES Catalysis, 1, 274–289.
https://doi.org/10.1039/D2EY00036A

92.

Electronic and ionic effects of sulphur and other acidic adsorbates on the surface of an SOFC cathode material

M. Siebenhöfer, A. Nenning, G. E. Wilson, J. A. Kilner, C. Rameshan, M. Kubicek, J. Fleig, P. Blaha
Journal of Materials Chemistry A, 11, 7213–7226.
https://doi.org/10.1039/D3TA00978E

91.

Exsolution on perovskite oxides: morphology and anchorage of nanoparticles

T. Ruh, D. Berkovec, F. Schrenk, C. Rameshan
Chemical Communication, 59, 3948–3956.
https://doi.org/10.1039/D3CC00456B

90.

Improving and degrading the oxygen exchange kinetics of La0.6Sr0.4CoO3−δ by Sr decoration

M. Siebenhöfer, C. Riedl, A. Nenning, W. Artner, C. Rameshan, A. K. Opitz, J. Fleig, M. Kubicek
Journal of Materials Chemistry A, 11, 12827–12836.
https://doi.org/10.1039/D2TA09362F

89.

Closed-Pore Formation in Oxygen Electrodes for Solid Oxide Electrolysis Cells Investigated by Impedance Spectroscopy

M. Krammer, A. Schmid, A. Nenning, A. Bumberger, M. Siebenhofer, C. Herzig, A. Limbeck, C. Rameshan, M. Kubicek, J. Fleig
ACS Applied Materials & Interfaces, 15, 8076–8092.
https://doi.org/10.1021/acsami.2c20731

88.

Deliberate control of the structure-specific active sites in PdIn bimetallic catalysts using adsorbate induced segregation effects

A. V. Bukhtiyarov, M. A. Panafidin, I. P. Prosvirin, N. S. Smirnova, P. V. Markov, G. N. Baeva, I. S. Mashkovsky, G. O. Bragina,  C. Rameshan, E. Yu. Gerasimov, Y. V. Zubavichus, V. I. Bukhtiyarov, A. Yu. Stakheev
Applied Surface Science, 608, 155086.
https://doi.org/10.1016/j.apsusc.2022.155086

87.

Structural evolution after oxidative pretreatment and CO oxidation of Au nanoclusters with different ligand shell composition: a view on the Au core

V. Truttmann, F. Schrenk, C. Marini, M. Palma, M. Sanchez-Sanchez, C. Rameshan, G. Agostini, N. Barrabés
Physical Chemistry Chemical Physics, 25, 3622–3628.
https://doi.org/10.1039/D2CP04498F

2022

86.

Perovskite-Type Oxide Catalysts in CO2 Utilization: A Principal Study of Novel Cu-Doped Perovskites for Methanol Synthesis

F. Schrenk, L. Lindenthal, G. Pacholik, T. Navratil, T. M. Berger, H. Drexler, R. Rameshan, T. Ruh, K. Föttinger, C. Rameshan
Compounds, 2, 378–387.
https://doi.org/10.3390/compounds2040031

85.

Designing Materials: Perovskites As Construction Kits

T. Ruh, V. Pramhaas, P. Bartl, C. Rameshan
Frontiers for Young Minds, 10, 741392.
https://doi.org/10.3389/frym.2022.741392

84.

Surface and Defect Chemistry of Porous La0.6Sr0.4FeO3−δ Electrodes on Polarized Three-Electrode Cells

A. Nenning, S. Reuter, R. Schlesinger, H. Summerer, R. Rameshan, L. Lindenthal, M. Holzmann, T. M. Huber, C. Rameshan, J. Fleig
Journal of The Electrochemical Society, 169, 094508.
https://doi.org/10.1149/1945-7111/ac908b

83.

Doped metal clusters as bimetallic AuCo nanocatalysts: insights into structural dynamics and correlation with catalytic activity by in situ spectroscopy

N. Barrabes, J. Ostolza, S. Reindl, M. Mähr, F. Schrenk, H. Drexler, C. Rameshan, W. Olszewski, G. Rupprechter
Faraday Discussions, 242, 94–105.
https://doi.org/10.1039/D2FD00120A

82.

CeO2 Supported Gold Nanocluster Catalysts for CO Oxidation: Surface Evolution Influenced by the Ligand Shell

V. Truttmann, H. Drexler, M. Stöger-Pollach, T. Kawawaki, Y. Negishi, N. Barrabés, G. Rupprechter
ChemCatChem, 14, e202200322.
https://doi.org/10.1002/cctc.202200779

81.

Impact of nanoparticle exsolution on dry reforming of methane: Improving catalytic activity by reductive pre-treatment of perovskite-type catalysts

F. Schrenk, L. Lindenthal, H. Drexler, G. Urban, R. Rameshan, H. Summerer, T. Berger, T. Ruh, A. K. Opitz, C. Rameshan
Applied Catalysis B: Environmental, 318, 121886.
https://doi.org/10.1016/j.apcatb.2022.121886

80.

Boosting the activity of PdAg2/Al2O3 supported catalysts towards the selective acetylene hydrogenation by means of CO-induced segregation: A combined NAP XPS and mass-spectrometry study

A. V. Bukhtiyarov, M. A. Panafidin, I. P. Prosvirin, I. S. Mashkovsky, P. V. Markov, A. V. Rassolov, N. S. Smirnova, G. N. Baeva, C. Rameshan, R. Rameshan, Y. V. Zubavichus, V. I. Bukhtiyarov, A. Yu. Stakheev
Applied Surface Science, 604, 154497.
https://doi.org/10.1016/j.apsusc.2022.154497

79.

In situ techniques reveal the true capabilities of SOFC cathode materials and their sudden degradation due to omnipresent sulfur trace impurities

C. Riedl, M. Siebenhofer, A. Nenning, A. Schmid, M. Weiss, C. Rameshan, A. Limbeck, M. Kubicek, A. K. Opitz, J. Fleig
Journal of Materials Chemistry A, 10, 14838–14848
https://doi.org/10.1039/d2ta03335f

78.

The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst

P. Amann, B. Klötzer, D. Degerman, N. Köpfle, T. Götsch, P. Lömker, C. Rameshan, K. Ploner, D. Bikaljevic, H.-Y. Wang, M. Soldemo, M. Shiplin, C. M. Goodwin, J. Gladh, J. H. Stenlid, M. Börner, C. Schlüter, A. Nilsson
Science, 376, 603–608.
https://doi.org/10.1126/science.abj7747

77.

Conference Report: YEuCat Better Together – Collaborative Catalysis in a Changing World

P. S. F. Mendes, N. Vucetic, A. Valverde-González, M. Delporte, L. P. J. Gonçalves, G. Isapour, M. Khatamirad, M. Kinnaer, L. Lindenthal, R. Pointecouteau, A. S. G. G. Santos, F. Schrenk, B. Thijs, B. Ipek, M. Van der Verren, X. Wu, E. Moioli
ChemCatChem, 14, e202200166.
https://doi.org/10.1002/cctc.202200166

76.

Performance modulation through selective, homogenous surface doping of lanthanum strontium ferrite electrodes revealed by in situ PLD impedance measurements

C. Riedl, M. Siebenhofer, A. Nenning, G. Friedbacher, M. Weiss, C. Rameshan, J. Bernardi, A. Limbeck, M. Kubicek, A. K. Opitz, J. Fleig
Journal of Materials Chemistry A, 10, 2973–2986.
https://doi.org/10.1039/D1TA08634K

75.

AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation

I. López-Hernández, V. Truttmann, C. Garcia, C. W. Lopes, C. Rameshan, M. Stöger-Pollach, N. Barrabés, G. Rupprechter, F. Rey, A. E. Palomares
Catalysis Today, 384-386, 166–176.
https://doi.org/10.1016/j.cattod.2021.04.016

74.

CO Oxidation Capabilities of La- and Nd-Based Perovskites

T. Ruh, R. Buchinger, L. Lindenthal, F. Schrenk, C. Rameshan
Fuels, 3, 31–43.
https://doi.org/10.3390/fuels3010003

2021

73.

In Situ Growth of Exsolved Nanoparticles under Varying rWGS Reaction Conditions—A Catalysis and Near Ambient Pressure-XPS Study

L. Lindenthal, J. Huber, H. Drexler, T. Ruh, R. Rameshan, F. Schrenk, S. Löffler, C. Rameshan
Catalysts, 11, 1484.
https://doi.org/10.3390/catal11121484

72.

Selective Ligand Exchange Synthesis of Au16(2-PET)14 from Au15(SG)13

V. Truttmann, S. Pollitt, H. Drexler, S. P. Nandan, D. Eder, N. Barrabés, G. Rupprechter
Journal of Chemical Physics, 155, 161102.
https://doi.org/10.1063/5.0062534

71.

Comparison of novel Ni doped exsolution perovskites as methane dry reforming catalysts

L. Lindenthal, F. Schrenk, R. Rameshan, C. Rameshan, L. Kronlachner, A. Nenning
ES3 Web of Conferences, 266, 02019.
https://doi.org/10.1051/e3sconf/202126602019

70.

In Situ XPS studies of MoS2-based CO2 hydrogenation catalysts

G. Pacholik, L. Enzlberger, A. Benzer, R. Rameshan, M. Latschka, C. Rameshan, K. Föttinger
Journal of Physics D: Applied Physics, 54, 324002.
https://doi.org/10.1088/1361-6463/ac006f

69.

Novel Perovskite Catalysts for CO2 Utilization – Exsolution Enhanced Reverse Water-Gas Shift Activity

L. Lindenthal, J. Popovic, R. Rameshan, J. Huber, F. Schrenk, T. Ruh, A. Nenning, S. Löffler, A. K. Opitz, C. Rameshan
Applied Catalysis B: Environmental, 292, 120183.
https://doi.org/10.1016/j.apcatb.2021.120183

68.

Exsolution Catalysts—Increasing Metal Efficiency

L. Lindenthal, R. Buchinger, H. Drexler, F. Schrenk, T. Ruh, C. Rameshan
Encyclopedia, 1, 240–260.
https://doi.org/10.3390/encyclopedia1010023

67.

Hybrid carbon spherogels: carbon encapsulation of nano-titania

M. Salihovic, J. Schoiber, A. Cherevan, C. Rameshan, G. Fritz-Popovski, M. Ulbricht, S. Arnold, V. Presser, O. Paris, M. Musso, N. Hüsing, M. S. Elsaesser
Chemical Communications, 57, 3905–3908.
https://doi.org/10.1039/D1CC00697E

66.

Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO2 Model Catalysts

V. Pramhaas, M. Roiaz, N. Bosio, M. Corva, C. Rameshan, E. Vesseli, H. Grönbeck, G. Rupprechter
ACS Catalysis, 11, 208–214.
https://doi.org/10.1021/acscatal.0c03974

2020

65.

How Greenhouse Gases Can Be Used to Store Energy

T. Ruh, V. Pramhaas, P. Bartl, C. Rameshan
Frontiers for Young Minds, 8, 527039.
https://doi.org/10.3389/frym.2020.527039

64.

An ultrahigh vacuum-compatible reaction cell for model catalysis unter atmospheric pressure flow conditions

T. Haunold, C. Rameshan, A. V. Bukhtiyarov, G. Rupprechter
Review of Scientific Instrumens, 91, 125101.
https://doi.org/10.1063/5.0026171

63.

Ca-doped rare earth perovskite materials for tailored exsolution of metal nanoparticles

L. Lindenthal, T. Ruh, R. Rameshan, H. Summerer, A. Nenning, C. Herzig, S. Löffler, A. Limbeck, A. K. Opitz, P. Blaha, C. Rameshan
Acta Crystallographica, B76, 1055–1070.
https://doi.org/10.1107/S2052520620013475

62.

Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation

C. Garcia, V. Truttmann, I. Lopez, T. Haunold, C. Marini, C. Rameshan, E. Pittenauer, P. Kregsamer, K. Dobrezberger, M. Stöger-Pollach, N. Barrabes, G. Rupprechter
Journal of Physical Chemistry C, 124, 23626–23636.
https://doi.org/10.1021/acs.jpcc.0c05735

61.

Novel Sample-Stage for Combined Near Ambient Pressure X-ray Photoelectron Spectroscopy, Catalytic Characterization and Electrochemical Impedance Spectroscopy

R. Rameshan, A. Nenning, J. Raschhofer, L. Lindenthal, T. Ruh, H. Summerer, A. K. Opitz, T. M. Huber, C. Rameshan
Crystals, 10, 947–962.
https://doi.org/10.3390/cryst10100947

60.

Coverage-Induced Orientation Change: CO on Ir(111) Monitored by Polarization-Dependent Sum Frequency Generation Spectroscopy and Density Functional Theory

X. Li, V. Pramhaas, C. Rameshan, P. Blaha, G. Rupprechter
Journal of Physical Chemistry C, 124, 18102–18111.
https://doi.org/10.1021/acs.jpcc.0c04986

59.

The CECAM electronic structure library and the modular software development paradigm

M. J. T. Oliveira, N. Papior, Y. Pouillon, V. Blum, E. Artacho, D. Caliste, F. Corsetti, S. de Gironcoli, A. M. Elena, A. Garcia, V. M. García-Suárez, L. Genovese, W. P. Huhn, G. Huhs, S. Kokott, E. Küçükbenli, A. H. Larsen, A. Lazzaro, I. V. Lebedeva, V. Li, D. López-Durán, P. López-Tarifa, M. Lüders, M. A. L. Marques, J. Minar, S. Mohr, A. A. Mostofi, A. O’Cais, M. C. Payne, T. Ruh, D. G. A. Smith, J. M. Soler, D. A. Strubbe, N. Tancogne-Dejean, D. Tildesley, M. Torrent, V. W. Yu
Journal of Chemical Physics, 153, 024117.
https://doi.org/10.1063/5.0012901

58.

Absorbance-based Spectroelectrochemical Sensor for Determination of Ampyra Based on Electrochemical Preconcentration

A. Ghoorchian, A. Afkhami, T. Madrakian, R. Rameshan, C. Rameshan, A. Hajian
Sensors and Actuators B: Chemical, 324, 128723.
https://doi.org/10.1016/j.snb.2020.128723

57.

High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts

J. Popovic, L. Lindenthal, R. Rameshan, T. Ruh, A. Nenning, S. Löffler, A. K. Opitz, C. Rameshan
Catalysts, 10, 582–598.
https://doi.org/10.3390/catal10050582

56.

Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution

L. Lindenthal, R. Rameshan, H. Summerer, T. Ruh, J. Popovic, A. Nenning, S. Löffler, A. K. Opitz, P. Blaha, C. Rameshan
Catalysts, 10, 268–281.
https://doi.org/10.3390/catal10030268

55.

Chemically Selective Imaging of Individual Bonds through Scanning Electron Energy-Loss Spectroscopy: Disulfide Bridges Linking Gold Nanoclusters

K. Sokołowska, Z. Luan, E. Hulkko, C. Rameshan, N. Barrabés, V. A. Apkarian, T. Lahtinen
Journal of Physical Chemistry Letters, 11, 796–799.
https://doi.org/10.1021/acs.jpclett.9b03496

2019

54.

A Non-Enzymatic Glucose Sensor Based on the Hybrid Thin Films of Cu on Acetanilide/ITO

M. Sajadpour, H. Siampour, S. Abbasian, M. Amiri, R. Rameshan, C. Rameshan, A. Hajian, H. Bagheri, A. Moshaii
Journal of the Electrochemical Society, 166, B1116–B1125.
https://doi.org/10.1149/2.0231913jes

53.

Support effect on the reactivity and stability of Au25(SR)18 and Au144(SR)60 nanoclusters in liquid phase cyclohexane oxidation

C. García, S. Pollitt, M. van der Linden, V. Truttmann, C. Rameshan, R. Rameshan, E. Pittenauer, G. Allmaier, P. Kregsamer, M. Stöger-Pollach, N. Barrabés, G. Rupprechter
Catalysis Today, 336, 174–185.
https://doi.org/10.1016/j.cattod.2018.12.013

52.

Ligand and support effects on the reactivity and stability of Au38(SR)24 catalysts in oxidation reactions

B. Zhang, C. García, A. Sels, G. Salassa, C. Rameshan, J. Llorca, K. Hradil, G. Rupprechter, N. Barrabés, T. Bürgi
Catalysis Communications, 130, 105768–105774.
https://doi.org/10.1016/j.catcom.2019.105768

51.

Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation

M. Roiaz, L. Falivene, C. Rameshan, L. Cavallo, S. M. Kozlov, G. Rupprechter
Journal of Physical Chemistry C, 123, 8112–8121.
https://doi.org/10.1021/acs.jpcc.8b07668

50.

Structural Modifications of Perovskites by Tailored Exsolution for Enhanced Catalytic Activity

R. Rameshan, C. Rameshan, T. Ruh, A. Nenning, A. K. Opitz
Acta Crystallographica Section A: Foundation and Advances , A75, e322.
https://doi.org/10.1107/S2053273319092349

49.

Tailored Exsolution of Metal Nanoparticles: Structural and Chemical Characterisation of Doped Perovskites by XPS and XRD

J. Raschhofer, L. Lindenthal, J. Popovic, T. Ruh, R. Rameshan, A. Nenning, A. K. Opitz, C. Rameshan
Acta Crystallographica Section A: Foundation and Advances , A75, e314.
https://doi.org/10.1107/S2053273319092428

48.

CO2 activation on ultrathin ZrO2 film by H2O co-adsorption: In situ NAP-XPS and IRAS studies

H. Li, C. Rameshan, A. V. Bukhtiyarov, I. P. Prosvirin, V. I. Bukhtiyarov, G. Rupprechter
Surface Science, 679, 139–146.
https://doi.org/10.1016/j.susc.2018.08.028

2018

47.

Vibrational fingerprint of localized excitons in a two-dimensional metal-organic crystal

M. Corva, A. Ferrari, M. Rinaldi, Z. Feng, M. Roiaz, C. Rameshan, G. Rupprechter, R. Costantini, M. Dell’Angela, G. Pastore, G. Comelli, N. Seriani, E. Vesselli
Nature Communications, 9, 4703–4710.
https://doi.org/10.1038/s41467-018-07190-1

46.

The Chemical Evolution of the La0.6Sr0.4CoO3−δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity

A. K. Opitz, C. Rameshan, M. Kubicek, G. M. Rupp. A. Nenning, T. Götsch, R. Blume, M. Hävecker, A. Knop‑Gericke, G. Rupprechter, B. Klötzer, J. Fleig
Topics in Catalysis, 61, 2129–2141.
https://doi.org/10.1007/s11244-018-1068-1

45.

ChemCatChem – Front Cover: Ligand migration from cluster to support: A crucial factor for catalysis by thiolate-protected gold clusters

B. Zhang, A. Sels, G. Salassa, S. Pollitt, V. Truttmann, C. Rameshan, J. Llorca, W. Olszewski, G. Rupprechter, T. Bürgi, N. Barrabés
ChemCatChem, 10, 5337.
https://doi.org/10.1002/cctc.201801717

44.

Ligand migration from cluster to support: A crucial factor for catalysis by thiolate-protected gold clusters

B. Zhang, A. Sels, G. Salassa, S. Pollitt, V. Truttmann, C. Rameshan, J. Llorca, W. Olszewski, G. Rupprechter, T. Bürgi, N. Barrabés
ChemCatChem, 10, 5372–5376.
https://doi.org/10.1002/cctc.201801474

43.

Impregnated and Co-precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 Catalysts: Influence of the Microstructure on the CO2 Selectivity in Methanol Steam Reforming

C. Rameshan, H. Lorenz, M. Armbrüster, I. Kasatkin, B. Klötzer, T. Götsch, K. Ploner, S. Penner
Catalysis Letters, 148, 3062–3071.
https://doi.org/10.1007/s10562-018-2491-4

42.

In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(111) inverse model catalyst

C. Rameshan, H. Li, K. Anic, M. Roiaz, V. Pramhaas, R. Rameshan, R. Blume, M. Hävecker, J. Knudsen, A. Knop-Gericke, G. Rupprechter
Journal of Physics: Condensed Matter, 30, 264007.
https://doi.org/10.1088/1361-648X/aac6ff

41.

Polarization-Dependent SFG Spectroscopy of Near Ambient Pressure CO Adsorption on Pt(111) and Pd(111) Revisited

X. Li, M. Roiaz, V. Pramhaas, C. Rameshan, G. Rupprechter
Topics in Catalysis, 61, 751–762.
https://doi.org/10.1007/s11244-018-0949-7

40.

Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts

M. Roiaz, V. Pramhaas, X. Li, C. Rameshan, G. Rupprechter
Review of Scientific Instruments, 89, 045104.
https://doi.org/10.1063/1.5021641

39.

Ice Nucleation Activity of Graphene and Graphene Oxides

T. Häusler, P. Gebhardt, D. Iglesias, C. Rameshan, S. Marchesan, D. Eder, H. Grothe
Journal of Physical Chemistry C, 122, 8182–8190.
https://doi.org/10.1021/acs.jpcc.7b10675

38.

Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

A. Motin, T. Haunold, A. Bukhtiyarov, A. Bera, C. Rameshan, G. Rupprechter
Applied Surface Science, 440, 680–687.
https://doi.org/10.1016/j.apsusc.2018.01.148

2017

37.

Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO2 Electrolysis Investigated by Operando Photoelectron Spectroscopy

A. K. Opitz, A. Nenning, C. Rameshan, M. Kubicek, T. Götsch, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer, J. Fleig
ACS Applied Materiels & Interfaces, 9, 35847–35860.
https://doi.org/10.1021/acsami.7b10673

36.

Aerosol-assisted CVD of thioether-functionalised indium aminoalkoxides

F. Biegger, F. Jungwirth, M. S. Seifner, C. Rameshan, S. Barth
Monatshefte für Chemie, 148, 13851392.
https://doi.org/10.1007/s00706-017-1980-2

35.

Synthesis and Properties of Monolayer-Protected Cox(SC2H4Ph)m Nanoclusters

S. Pollitt, E. Pittenauer, C. Rameshan, T. Schachinger, O. V. Safonova, V. Truttmann, A. Bera, G. Allmaier, N. Barrabés, G. Rupprechter
Journal of Physical Chemistry C, 121, 10948–10956.
https://doi.org/10.1021/acs.jpcc.6b12076

34.

Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine B

T. Phongamwong, W. Donphai, P. Prasitchoke, C. Rameshan, N. Barrabés, W. Klysubun, G. Rupprechter, M. Chareonpanich
Applied Catalysis B: Environmental, 207, 326–334.
https://doi.org/10.1016/j.apcatb.2017.02.042

33.

Operando studies of working catalysts by synchrotron-based XPS and XAS at atmospheric pressure

G. Rupprechter, K. Föttinger, C. Rameshan
Abstracts of Papers of the American Chemical Society, 253, 223.

32.

Surface spectroscopy and surface microscopy of catalytic processes: From model to technological materials, from UHV to operando conditions

G. Rupprechter, C. Rameshan, K. Föttinger, Y. Surchorski
Abstracts of Papers of the American Chemical Society, 253, 21-COLL.

2016

31.

Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts

L. Lukashuk, K. Föttinger, E. Kolar, C. Rameshan, D. Teschner, M. Hävecker, A. Knop-Gericke, N. Yigit, H. Li, E. McDermott, M. Stöger-Pollach, G. Rupprechter
Journal of Catalysis, 344, 1–15.
https://doi.org/10.1016/j.jcat.2016.09.002

30.

Thioether functionalised gallium and indium alkoxides in materials synthesis

F. Biegger, C. Rameshan, A. K. Opitz, J. Noll, T. Haunold, H. Lang, S. Barth
New Journal of Chemistry, 40, 6962–6969.
https://doi.org/10.1039/C6NJ00402D

29.

Surface spectroscopy on UHV-grown and technological Ni-ZrO2 reforming catalysts: from UHV to operando conditions

K. Anic, A. Wolfbeisser, H. Li, C. Rameshan, K. Föttinger, J. Bernardi, G. Rupprechter
Topics in Catalysis, 59, 1614–1627.
https://doi.org/10.1007/s11244-016-0678-8

28.

CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study

K. Anic, A. Bukhtiyarov, H. Li, C. Rameshan, G. Rupprechter
Journal of Physical Chemistry C, 120, 10838–10848.
https://doi.org/10.1021/acs.jpcc.5b12494

27.

Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

A. Nenning, A. K. Opitz, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer, J. Fleig
Journal of Physical Chemistry C, 120, 1461–1471.
https://doi.org/10.1021/acs.jpcc.5b08596

2015

26.

Water Splitting on Model-Composite La0.6Sr0.4FeO3-δ (LSF) Electrodes in H2/H2O Atmosphere

A. K. Opitz, A. Nenning, S. Kogler, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer, J. Fleig
ECS Transactions, 68, 3333–3343.
https://doi.org/10.1149/06801.3333ecst

25.

Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy

O. Karslıoglu, S. Nemsak, I. Zegkinoglou, A. Shavorskiy, M. Hartl, F. Salmassi, E. M. Gullikson, M. L. Ng, C. Rameshan, B. Rude, D. Bianculli, A. A. Cordones, S. Axnanda, E. J. Crumlin, P. N. Ross, C. M. Schneider, Z. Hussain, Z. Liu, C. S. Fadley, H. Bluhm
Faraday Discussions, 180, 35–53.
https://doi.org/10.1039/C5FD00003C

24.

Reversible Modification of the Structural and Electronic Properties of a Boron Nitride Monolayer by CO Intercalation

M. L. Ng, A. Shavorskiy, C. Rameshan, A. Mikkelsen, E. Lundgren, A. Preobrajenski, H. Bluhm
ChemPhysChem, 16, 923–927.
https://doi.org/10.1002/cphc.201500031

23.

Water adsorption on polycrystalline vanadium from ultra-high vacuum to ambient relative humidity

C. Rameshan, M. L. Ng, A. Shavorskiy, J. T. Newberg, H. Bluhm
Surface Science, 641, 141–147.
https://doi.org/10.1016/j.susc.2015.06.004

22.

The growth of an ultrathin zirconia film on Pt3Zr examined by-HR-XPS, TPD, STM and DFT

H. Li, J. Choi, W. Mayr-Schmölzer, C. Weilach, C. Rameshan, F. Mittendorfer, J. Redinger, M. Schmid, G. Rupprechter
Journal of Physical Chemistry C, 119, 2462–2470.
https://doi.org/10.1021/jp5100846

21.

Beschleunigung der elektrochemischen Wasserspaltungskinetik durch polarisations-getriebene Bildung von oberflächennahem Eisen(0): Eine in-situ XPS Studie an Perowskit-Elektroden

A. K. Opitz, A. Nenning, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, J. Fleig, B. Klötzer
Angewandte Chemie, 127, 2666–2670.
https://doi.org/10.1002/ange.201409527

2014

20.

Enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface Fe0: An in-situ XPS study on perovskite-type electrodes

A. K. Opitz, A. Nenning, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, J. Fleig, B. Klötzer
Angewandte Chemie – International Edition, 54, 2628–2632.
https://doi.org/10.1002/anie.201409527
https://doi.org/10.1002/ange.201580961 (Frontispiz)

19.

PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS

H. H. Holzapfel, A. Wolfbeisser, C. Rameshan, C. Weilach, G. Rupprechter
Topics in Catalysis, 57, 1218–1228.
https://doi.org/10.1007/s11244-014-0295-3

18.

Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

L. Mayr, R. Rameshan, B. Klötzer, S. Penner, C. Rameshan
Review of Scientific Instruments, 85, 055104.
https://doi.org/10.1063/1.4874002

2013

17.

From Oxide-Supported Palladium to Intermetallic Palladium Phases: Consequences for Methanol Steam Reforming

H. Lorenz, C. Rameshan, T. Bielz, N. Memmel, W. Stadlmayer, L. Mayr, Q. Zhao, S. Soisuwan, B. Klötzer, S. Penner
ChemCatChem, 5, 1273–1285.
https://doi.org/10.1002/cctc.201200712

2012

16.

CO2-selective methanol steam reforming on In-doped Pd studied by ambient pressure X-ray photoelectron spectroscopy

C. Rameshan, H. Lorenz, L. Mayr, S. Penner, D. Zemlyanov, R. Arrigo, M. Hävecker, R. Blume, A. Knop-Gericke, R. Schlögl, B. Klötzer
Journal of Catalysis, 295, 186–194.
https://doi.org/10.1016/j.jcat.2012.08.008

15.

In-situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

C. Rameshan, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, B. Klötzer
Journal of Catalysis, 290, 126–137.
https://doi.org/10.1016/j.jcat.2012.03.009

14.

How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry

M. Armbrüster, M. Behrens, F. Cinquini, K. Föttinger, Y. Grin, A. Haghofer, B. Klötzer, A. Knop-Gericke, H. Lorenz, A. Ota, S. Penner, J. Prinz, C. Rameshan, Z. Revay, D. Rosenthal, G. Rupprechter, P. Sautet, R. Schlögl, L. Shao, L. Szentmiklosi, D. Teschner, D. Torres, R. Wagner, R. Widmer, G. Wowsnick
ChemCatChem, 4, 1048–1063.
https://doi.org/10.1002/cctc.201200100

13.

Hydrogen Production by Methanol Steam Reforming on Copper Boosted by Zinc-Assisted Water Activation

C. Rameshan, W. Stadlmayr, S. Penner, H. Lorenz, N. Memmel, M. Hävecker, R. Blume, D. Teschner, T. Rocha, D. Zemlyanov, A. Knop-Gericke, R. Schlögl, B. Klötzer
Angewandte Chemie – International Edition, 51, 3002–3006.
https://doi.org/10.1002/anie.201106591

12.

Steigerung der Wasserstoffproduktion in der Methanol-Dampfreformierung auf Kupfer durch Zink-unterstuetzte Wasseraktivierung

C. Rameshan, W. Stadlmayr, S. Penner, H. Lorenz, N. Memmel, M. Hävecker, R. Blume, D. Teschner, T. Rocha, D. Zemlyanov, A. Knop-Gericke, R. Schlögl, B. Klötzer
Angewandte Chemie, 124, 3057–3061.
https://doi.org/10.1002/ange.201106591

2011

11.

Surface-assisted laser desorption/ionization-mass spectrometry using TiO2-coated steel targets for the analysis of small molecules

H. Sonderegger, C. Rameshan, H. Lorenz, F. Klauser, M. Klerks, M. Rainer, R. Bakry, C. W. Huck, G. K. Bonn
Analytical and Bioanalytical Chemistry, 401, 1963–1974.
https://doi.org/10.1007/s00216-011-5255-1

2010

10.

Steam reforming of methanol on PdZn near-surface alloys on Pd(111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, B. Klötzer
Journal of Catalysis, 276, 101–113.
https://doi.org/10.1016/j.jcat.2010.09.006

9.

Subsurface-Controlled CO2 Selectivity of PdZn Near-Surface Alloys in H2 Generation by Methanol Steam Reforming

C. Rameshan, W. Stadlmayr, C. Weilach, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, N. Memmel, D. Zemlyanov, G. Rupprechter, B. Klötzer
Angewandte Chemie – International Edition, 49, 3224–3227.
https://doi.org/10.1002/anie.200905815
https://doi.org/10.1002/ange.201580961  (Frontispiz)

8.

Subsurface-gesteuerte CO2-Selektivität von PdZn-Oberflächenlegierungen in der H2-Erzeugung durch Methanoldampf-reformierung

C. Rameshan, W. Stadlmayr, C. Weilach, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, N. Memmel, D. Zemlyanov, G. Rupprechter, B. Klötzer
Angewandte Chemie, 122, 3292–3296.
https://doi.org/10.1002/ange.200905815

7.

Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM

H. Lorenz, Q. Zhao, S. Turner, O. I. Lebedev, G. Van Tendeloo, B. Klötzer, C. Rameshan, S. Penner
Materials Chemistry and Physics, 122, 623–629
https://doi.org/10.1016/j.matchemphys.2010.03.057

6.

Temperature-Induced Modifications of PdZn Layers on Pd(111)

W. Stadlmayr, C. Rameshan, C. Weilach, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, D. Zemlyanov, S. Penner, R. Schlögl, G. Rupprechter, B. Klötzer, N. Memmel
Journal of Physical Chemistry C, 114 (24), 10850–10856.
https://doi.org/10.1021/jp1008835

5.

Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming:
A comparative study

H. Lorenz, Q. Zhao, S. Turner, O. I. Lebedev, G. Van Tendeloo, B. Klötzer, C. Rameshan, K. Pfaller, J. Konzett, S. Penner
Applied Catalysis A: General, 381, 242–252.
https://doi.org/10.1016/j.apcata.2010.04.015

4.

Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming

Q. Zhao, H. Lorenz, S. Turner, O. I. Lebedev, G. Van Tendeloo, C. Rameshan, B. Klötzer, J. Konzett, S. Penner
Applied Catalysis A: General, 375, 188–195.
https://doi.org/10.1016/j.apcata.2009.12.027

3.

Pd–In2O3 interaction due to reduction in hydrogen: Consequences for methanol steam reforming

H. Lorenz, S. Turner, O. I. Lebedev, G. Van Tendeloo, B. Klötzer, C. Rameshan, K. Pfaller, S. Penner
Applied Catalysis A: General, 374, 180–188.
https://doi.org/10.1016/j.apcata.2009.12.007

2009

2.

Pd/Ga2O3 methanol steam reforming catalysts: Part II. Catalytic Selectivity

H. Lorenz, S. Penner, W. Jochum, C. Rameshan, B. Klötzer
Applied Catalysis A: General, 358, 203–210.
https://doi.org/10.1016/j.apcata.2009.02.027

1.

Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects

S. Penner, H. Lorenz, W. Jochum, M. Stöger-Pollach, D. Wang, C. Rameshan, B. Klötzer
Applied Catalysis A: General, 358, 193–202.
https://doi.org/10.1016/j.apcata.2009.02.026